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CALCULATION OF THE MOTION OF A SHOCK WAVE
AND FLOW PARAMETERS IN A SHOCK TUBE
WITH A NONINSTANTANEOUSLY OPENING
DIAPHRAGM

Zh.3. Duntsova, I.V., Yershov, V.T. Kireyev,
and Ye.I. Ruzavin
(Moscow)

ABSTRACT: Calculation of changes in the shock-wave velo-
city and gas-flow parameters in the process of nonin-
stantaneous opening of the diaphragm of a shock tube.
The method of characteristics is used in developing the
computer algorithms applied in the calculations. The
calculated values for shock-wave velocities and gas-flow
parameters are compared with experimental results for a
number of steel, aluminum, and brass diaphragms of var-
ious designs.

Calculated results are presented for the variation of shock-
wave propagation velocity on opening of the diaphragm and the
parameters of the driving and driven gases on the accelerating
section of a single-diaphragm shock tube. The computed values
are compared in some cases with values measured experimentally.

It is known that the basiec
factor determining the deviation
of flow stereotype from that pre-
dicted from the ideal theory [1,
2] on the initial path of shock-
wave motion in a shock tube is
the fact that the diaphragm does
not open instantaneously [1-31.
Noninstantaneous diaphragm open-
ing results in acceleration of
the shock wave on an accelerating
segment [1-3], the presence of
nonunidimensional flow in the
viecinity of the diaphragm [2, 14,
51, the experimentally observed
density nonuniformity of the
driven gas [6], and an increase
in the maximum shock-wave velocity over that of the ideal theory
[3]. Reference [3] proposes a calculation model that enables us
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Figure 1

to take into consideration only the increase in the maximum shock-
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wave velocity over the length of the tube among all of the devia-
tions from the ideal shock-tube model indicated above. The flow
model proposed in [7], which was used in the present study, per-
mits determination of the mode of opening of the diaphragm and
the associated variations in shock-wave velocity and the flow
variables of the driving and driven gases.

1. A three-dimensional nonsteady flow that is very difficult
to calculate numerically arises around the diaphragm as it opens.
In the flow schematization used here [7], which is represented in
Fig. 1, it is assumed that the gas in the high-pressure chamber
expands 1in a one-dimensional nonsteady decompression wave R and
that the variables of the gas passing across this wave in section
1, in the critical section ¥, and in section z (in which the ex-
panding Jjet of dr1v1ng gas reaches the chamber walls) are inter-
related at any point in time by the equations of one-dimensional
steady flow (quasistationary flow).

If we assume that the flow on the quasistationary segment is
isentropic, the equation system connecting the driving-gas vari-
ables from the initial sections to section z, in combination with
the law of variation of flow-section area fye = f (t) at time ¢,
enables us to determine the supersonic-flow varlables in sectlon
Z as functions of time. Obviously, the variation of the latter
determines the subsequent flow, which we shall assume to be one-
dimensional and nonsteady. Here, as in [3], reflection of the
flow from the tube walls is not taken into account.

The coordinate of the section in which the diaphragm is
mounted is taken as the approximate coordinate x of section z,
since, according to [4], the segment with eusentially two-dimen-—
sional flow near the diaphragm is much swmaller than the total
acceleration distance.

In [7], the relationship fy = f (%) was found by simultan-
eous solution of the equations

_ § d¢
A= r% s
o
m) (1.1)
2 . h
o) = [TS (tly — M) dg w]
. D
which were obtained by integrating the equations
N .
= - fo— I, -;-i=z=-cos¢ (1.2)

Here, ¢ is the blade rotation angle, ¢, and ¢, r.i’e the
angular velocity and rotation angle of the blade at vime t,, I
is the moment of inertia, M¢ is the torque, M is the moment of
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resistance, and f is the cross-sectional area of the low-pressure
chamber. (Here and below, the subscripts minus and plus denote
variables in the low- and high-pressure chambers, respectively.)
The opening time of the diaphragm depends only siightly on the
resistance forces [T7]. A numerical calculation of M, (¢) made for

the initial conditions: pressure p, = 70 kg/cm® (hydrogen), I =
= 0.82 ¢ 107° kgeemesec?, M = 0, and f_ = f_, indicated (Fig. 2)
that this function can be approximated quite well by the linear
relation (dashed line)

My = M, — (3, — M), [‘M,=,v,,(¢=0), My =i, (¢-=§_“)] (1.3)
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Here M, and M, can be determined in advance, since, accord-

ing to the flow model adopted, the flow variables in sections 2z
and ¥ (x v 0) agree at time zero (¢ = 0) and when the diaphragm
is wide open (¢ = %m) with the corresponding variables in section
x = 0, which can be determined from the ideal model [1, 2]. Then,
substituting (1.3) into (1.2) and assuming that ¢, = 0 and ¢, = 0
at t, = 0, we obtain

_ 2r7 /] L TMy—35 @ 2%
,t_[Ml_Mz’]'arcsm[ i, -;‘-] (1,4)

Solving (1.4) and (1.2) simultaneously on the assumption of
constant ratio of specific heats yf, we obtain the function f¥ =
= f#¥(t) in the form

,f_:. = 2sin? ;—{-:-%sinf[ ;_-arc sin( E.-(é-v-).)%]}. )E(v) =1 -.( Y+2+ 1)1' | ( r= ::: 1) (L5)

Figure 3 compares our relationship (1.5) (line a) with those
found experimentally in [8] (line b), [9] (1line ¢), and [5] (line




d). We see that Formula (1.5) describes the diaphragm opening
curve quite satisfactorily, and it will be used in the calcula-
tions to follow.

The total diaphragm opening time t¥* can be found if we set
¢ = L1 in (1.4). Thus, for a diaphragm of thickness & made from
a material with a density p and inserted in a square-section (H x
x H) shock tube (with scoring along the diagonals of the square),
we have

HE \ s t ", v
* =N p_) : N [ /zn] :arcs_six. _(}_)_‘]'fa

v P+ ='_‘E(—Y) L.‘z (1.6)

We note that (1.6) was derived in [10] by dimensional analy-
sis based on the results of [7], where it was shown that inertial
forces are decisive for diaphragm opening. As we see from (1.6),
N is determined by the nature of the gas; N = 0.9506 for Yy = 1.4,

B Equation (1.6) can also be /122
e /) used for approximate determina-

" 17 tion of t¥ in a round-section
Al shock tube, for which dv2 must

’ 4’?6 be substituted for H.

//99/;'//? A ] The values of t#* = té*
ﬁ)zaﬁf’m (in usec) computed by (1.6) are
: in satisfactory agreement with

7)’ the measured t¥ = t,¥ for var-

’ : ious t, (in kg/cm?), geometrical
dimensions H and § (in cm) and
diaphragm materials (literature
sources are indicated in the
last column of Table 1). The
experimental values of t:¥ given
in [8] are an exception.
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2. The flow variables and
Figure 4 the variations of shock-wave
propagation velocity on the ac-
celeration segment of the shock
tube (below section z) were computed on an M-20 electronic digital
computer by the method of characteristicecs [14, 15], using the di-
mensionless parameters

¢ < H

. ' ;
¢ ait* ’,‘ D+ G4 as a4

Here x is distance, a is the speed of sound, u is velocity,
and v is shock-wave velocity. It was assumed, as in [7], that the
gases are inviscid and nonheat-conducting, have constant ratios of
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specific heats, and are intermiscible.

When the variables of (2.1) are used in the calculations,
the starting initial parameters of the present problem will be,
as in calculation of the flow variables from the ideal model,

P—p-/p'i‘oA—:a—/a'hY-vY'l"

TABLE 1
Py H | Diaphragm LI 4 t
- 1530 4.03 Steel - 0.0254 4~ 310--580 - 600 {3}
: . -+-0.0889
.. 115 1.343 Al 0.02286 94 180 - [8]
25.9 .4.343 Al 0.03302 92 180
10.2 2,695 Cu 0.0254 © 343 1050
9.46 2.5 Brass 0.055 L 475 520 9]
26 2.5 Brass . 0.055 287 344
- 56.8 2.5 Prass - 0.058 193 - 163
141 0.0398 Al 0.0254 88 85-+105 {11)]
1,34 0.0898 Al 0.0254 90 105-+-145 :
15 2.24 Al 0.00254 42 45 {121
15 2.24 Al - 0.0108 84 105 :
3.5+5.6 15.3 Al 0.0508 8541030 [13]

* 1000

The calculations were carried out for the following initial-

parameter values:

b

a)  v-=v+=167, A_=1, P_=0510~1+05-10 -7
; Vo=v+=14 A_=1, P_=0540"1+05.10~1

‘(set 1)
(set 2)

C) ya=i4, ye=167, 4.=03428, P_=0510"'+05-10~* (g0t 3)
d)  Y-=ve=14 AL =026203, P_=05-40-1+0510-°  (set })

The calculated results to be given below for these initial-
parameter values will be designated for brevity as Sets 1, 2, 3,

and 4, respectively.

The computed family of characteristics
appears in Fig. 4 (the flow diagram is in
Fig. 1), where the solid line S is the
shock wave, the dashed line K is the con-
tact surface, the double light line Q is
the disturbance that arises in the driving
gas, the solid light lines A are the char-
acteristics, and the dot-dash lines L are
particle trajectories. The initial system
of waves at time t, (near t = 0) was deter-
mined from solution of an arbitrary-dis-
continuity decay problem whose initial con-
ditions were the parameters of the driven
gas at t = 0 and those of the driving <as
in section z at t,. We note that as ., is

;‘lo

g 4,

¢

1
H
%

/

¢

J /ey

2 0" U4

Figure 5

/123

—




varied from t¥ to t = 0, the disturbance Q (Fig. 4) will at first
be a decompression wave and then a shock wave, with the intensity
of this wave increasing with decreasing ¥,. Thus the disturbance
Q was always a shock wave when the calculations were made in the
initial wave system.

The presence of the shock wave Q during the initial phase of
diaphragm opening was observed experimentally in [16]. With time,
the shock wave Q degenerates into an acoustic wave. The rapid
decrease in the intensity of shock wave Q with time t/tq (tq is

the ordinate of the point at which the last characteristic origi-
nating from the point with the coordinates x = 0, t = t¥ meets
the shock wave Q (Fig. 4)) is evident from Fig. 5, where we have
plotted curves of the pressure ratio P_ across this wave for Sets

1, 2, 3, and 4 with P_ = 0.5 » 10-7

The calculations were broken off after the last characteris-
tic met shock wave S (point M, Fig. 4), for the following reasons.
Owing to the rapid decay of shock wave Q, the region of driving-
gas flow parameters above this characteristic represents, except
for a narrow strip near the contact surface (which we shall not
take into consideration in the subsequent discussion), an isen-
tropic flow, whlch, since it is contiguous with the constant-
parameter flow in section z, is a simple wave [17]. After pass-
age of this wave, therefore, there will be no characteristic of
additional disturbances to the motion of the shock wave from this
region. Thereafter, the variation of particle velocity and pres-
sure along the last characteristic in the ‘driven gas did not ex-
ceed one percent in any of the cases computed, although the speed
of sound varied considerably. 1In view of this practical absence
of velocity and flow-pressure gradients, it can be stated that
there will not be any appreciable pressure and velocity disturb-
ances above the last characteristic in this region as well. This
is consistent with the exact solution of the one-dimensional non-
steady flow equations in the form

. - a8 as 0 dp +- ap 0 ’
= — U e == — U e ==
_p=.con.s . u: const, a‘+ F™ (a_t . )
p = p(x —ut), a = a(z— ut)

Figure 6, a, b, ¢, and d, presents curves of v/vm as a func-
tion of x/xm for the .ndicated gradients P_ and Sets 1, 2, 3, and
4, respectively. Here and below, Vi is the velocity of shock wave
S at point M (xm, t ), at which the last characteristic meets this
wave. PFigure 7 shows X and T as funetions of the initial grad-

ient P for these sets of conditlons, here, the curve numbers
match The set numbers. With (1.6), the diagrams of Figs. 6 and 7
easily yield the velocity change of shock wave S on the
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accelerating segment for each specific combination of gas initial
variables, tube geometrical dimensions, and diaphragm material.
It is interesting to note that a characteristic inflection of the
curves, which increases with diminishing P_, appears in Fig. 6, a
8 for vy = 1.67. Supplementary calculations indicated that,
other conditions the same, this inflection increases with in-
creasing vy, despite the fact that the manner in which the vari-
ables change in section z, which determines the downstream flow,
undergoes no marked disturbances.

As we have already noted, the absence of appreciable changes
in flow velocity and pressure along the last characteristic in
the driven gas guarantees the absence of marked pressure and



velocity disturbances and, consequently, preservation of variables
such as the speed of sound, entropy, and density along the tra-
Jectories of particles moving at constant velocity u_ in the re-
gion above the last characteristic. m
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This makes it possible to carry the values of a obtained on
the last characteristic along these trajectories to determine the
influence of noninstantaneous diaphragm opening on the working-
plug parameters after the shock wave has passed through the ac-
celerating segment. Figure 8, a, b, ¢, and d, presents values of
a/am as a function of W= (z—=uu)/(¢n—az;) fOr Sets 1, 2, 3, and 4,

respectively. Here, X, is the abscissa of the intersection point
of the contact surface with the line tm = const, and a, is the
speed of sound on shock wave S at point m. Figure 7 shows Xn as

a function of P_ for the sets of conditions for which the computa-
tions were made. Figure 8 shows that after acceleration of the
shock wave, the driven gas has substantial sonic-velocity nonuni-
formities, and hence also temperature, density, and other nonuni-
formities stemming from the prior history of shock-wave motion.
Qualitatively similar results were obtained in [6].

Figure 9, which typifies the sets of conditions computed,
presents curves of the driving-gas variables aias u/us p/pa (the
subscript k indicates the parameters of the driving gas at point
c, Fig. 4) as they vary along the last characteristic for Set 2
with P_ = 0.5 - 10-% (the dot-dash line indicates the position of
the disturbance Q, which is in this case an analog of the decom-
pression-wave tail in the ideal model); from them, we can infer
the absence of the uniform driving-gas plug predicted by ideal
theory toward the end of the shock-wave acceleration distance.

As we should expect, the values obtained for Vi by the above

method for Set 2 (the solid line in Fig. 10) lie between the
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values computed with the White model (dashed line) and the ideal
model (VT).
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The calculations glven above took account of the driving-gas
total-pressure losses only in the shock wave Q. However, it may
be necessary to consider impact losses at small relative diaphragm
apertures when these losses are substantially larger than those in
the normal shock. With this in mind, a calculation was made on
the scheme of Fig. 1, where, as before, the flow rate and energy
conservation equations were written between sections 1, #, and z,
and the condition of constant entropy between sections ¥ and z
was dropped; the flow in section 2z then became subsonic, and the



disturbances propagated upstream arrived at section ¥. Below
section z, the flow was, as before, assumed to be one-dimensional

a/a, bly 1Z
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Figure 9 Figure 10 ' Figure 11

and nonsteady. Comparison of the variation of v/vm down the

length of the low-pressure chamber as computed with consideration
of the above condition (dashed line in Fig. 11) and that deter-
mined from Fig. 6 (solid line) with the experimental curves [5]
(dot-dash line) indicates good agreement of the computed results
with the experimental data. The agreement of the calculated re-
sults (Fig. 11) obtalned with the above assumptions is obviously
due to the fact that the contribution of the flow-variable change
to acceleration of tThe shock wave is small at small diaphragnm
apertures (when a substantial difference is observed in the total-
pressure losses) by comparison with the contribution made at rela-
tively large diaphragm apertures (when the difference ia the
total-pressure losses practically vanishes).

2 We present a comparison of the

TABLE 2 experimentally measured density profile

Hz— Ny , behind the shock wave in the driven gas

with that determined from the curves of

P | P- & T Fig. 8 and Eq. (1.6). The experimental

. variation of the density profile in the
gas flow behind the shock wave was deter-

212 | 5

NG 0.62
200 5 8ﬁ 0.65 mnined from oscillograms obtained by the
10871 10 1 0.7% ,3%3 photoelectric shadow method [18] and re-
ﬁg % gﬁ% ohé presenting the time distribution of the
114 50 | 0.8 0.7 refractive~index gradient of the gas
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flow studied. The measurements were made in a shock tube 50 mm in
inside diameter at a distance of 8 m from the diaphragm. One of
the oscillograms appears in Fig. 12a. It shows the characteris-
tic inflection of the trace in the zone between the two spikes,
corresponding to passage ¢of the shock wave and the contact region.
The variation of the density p/p (p is the initial density of
the driven gas) determined for the driven gas from this oscillo-
gram (dashed line) is compared in Fig. 12b with the calculated
change (solid line). Table 2 gives calculated (&,) and expgri-

mentally measured (&,) values of &= (&°—t)/(@>—t). Here, te and

te(Flg. L) are the times of passage of the contact surface and
shock wave across the measurement crosz section (xe) and te° is

the time of passage of the boundary of the zone disturbed by dia-
phragm opening across the section of measurement. The table also
gives the initial variables of the gases (py in kg/cm? and p_ in
mm Hg) in the shock-tube chambers. Comparison of the experimental
data with the computed data in Table 2 and Fig. 12 indicates that
the density profile observed experimentally in the driven gas
behind the shock wave can be explained as due to noninstantaneous
diaphragm opening.
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